Reimagining date visualization using Python / Seema Acharya
Material type: TextPublication details: New Delhi : Wiley Publication, 2022.Description: xxiii, 348 pages : color illustrations ; 25 cmISBN:- 9789354641336
- 005.133 ACH
Item type | Current library | Call number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|
Books | Institute of Public Enterprise, Library S Campus | 005.133 ACH (Browse shelf(Opens below)) | Available | 47763 | ||
Books | Institute of Public Enterprise, Library S Campus | 005.133 ACH (Browse shelf(Opens below)) | Available | 47764 | ||
Books | Institute of Public Enterprise, Library S Campus | 005.133 ACH (Browse shelf(Opens below)) | Available | 47765 | ||
Books | Institute of Public Enterprise, Library S Campus | 005.133 ACH (Browse shelf(Opens below)) | Available | 47766 | ||
Books | Institute of Public Enterprise, Library S Campus | 005.133 ACH (Browse shelf(Opens below)) | Available | 47767 |
Browsing Institute of Public Enterprise, Library shelves, Shelving location: S Campus Close shelf browser (Hides shelf browser)
005.13 LAN R for everyone : advanced analytics and graphics / | 005.13 LAN R for everyone : advanced analytics and graphics / | 005.133 ACH Reimagining date visualization using Python / | 005.133 ACH Reimagining date visualization using Python / | 005.133 ACH Reimagining date visualization using Python / | 005.133 ACH Reimagining date visualization using Python / | 005.133 ACH Reimagining date visualization using Python / |
Preface
Acknowledgments
About the Authors
Chapter 1 Introduction to Data Visualization
1.1 What is Data Visualization?
1.2 Evolution of Data Visualization
1.2.1 Era of Statistical Chart Types
1.2.2 Era of Visual Display of Quantitative Information
1.2.3 The Era of Convergence
1.3 Why do We Need Data Visualization?
1.4 Difference between Data Visualization and Infographics
1.5 Principles of Gestalt’s Theory of Visual Perception
1.5.1 Why is Gestalt’s Principle Important?
1.5.2 Explanation of the Gestalt’s Principle
1.6 Advantages of Data Visualization
1.7 Benefits of Data Visualization
Multiple-Choice Questions
Answers
Chapter 2 Types of Digital Data
2.1 What is in Store?
2.2 Classification of Digital Data
2.2.1 Structured Data
2.2.1.1 Sources of Structured Data
2.2.1.2 Benefits of Structured Data
2.2.1.3 Disadvantages of Structured Data
2.2.1.4 Classifying Attributes of Structured Data
2.2.2 Semi-Structured Data
2.2.2.1 Sources of Semi-Structured Data
2.2.3 Unstructured Data
2.2.3.1 Issues with “Unstructured” Terminology
2.2.3.2 How to Deal with Unstructured Data
2.3 Structured versus Unstructured Data
Summary
Review Questions
Exercise
Resources
Answers
Chapter 3 Reading Data from Varied Data Sources into Python DataFrame
3.1 Read from Excel Data Source
3.1.1 Example: Read Data from “Superstore.xlsx”
3.2 Read Data from .csv
3.2.1 Example: Read Data from “iris.csv” into Pandas Data Frame
3.3 Load a Python Dictionary into a DataFrame
3.3.1 Cleaning up Data
3.3.1.1 Remove Rows that Contain Empty Cells
3.3.1.2 Cleaning Wrong Format
3.3.1.3 Cleaning Wrong Data
3.3.1.4 Removing Duplicates
3.4 Reading JSON data into a Pandas DataFrame
3.5 Reading Data from Microsoft Access Database
3.6 Reading Data from .txt File
3.7 Reading Data from XML File
Summary
Exercises
Chapter 4 Pros and Cons of Charts
4.1 Pie Chart
4.1.1 When to Use a Pie Chart?
4.1.2 How to Read a Pie Chart?
4.1.3 Pros and Cons of a Pie Chart
4.1.4 Five Tips for Using Pie Charts
4.1.5 A Critique’s View
4.2 Tree Map
4.2.1 Pros of Treemap
4.3 Heat Map
4.4 Scatter Plot
4.4.1 Correlation Coefficient
4.4.2 Why Use a Scatter Plot?
4.5 Histogram
4.5.1 What is Required to Plot a Histogram?
4.5.2 Pros of Histogram
4.6 Word Cloud
4.6.1 For What Should You Use a Word Cloud?
4.6.2 Where Should You Not Use a Word Cloud?
4.7 Box Plot
4.7.1 Advantages of a Box Plot
4.7.2 Disadvantages of Box Plot
4.7.3 When to Use a Box and Whisker Plot
4.7.4 What All It Can Help You With?
4.7.5 Box Plot Symbol Explanation Diagram
4.8 Chart Chooser
Summary
Review Questions
Resources
Answers
Chapter 5 Good Chart Designs
5.1 Mistakes That Can Be Avoided
5.1.1 Example 1
5.1.2 Example 2
5.1.3 Example 3
5.1.4 Example 4
5.1.5 Example 5
5.1.6 Example 6
5.1.7 Example 7
5.1.8 Example 8
5.1.9 Example 9
5.2 Less Is More
5.2.1 Example 1
5.2.2 Example 2
5.2.3 Example 3
5.3 Tables versus Charts
5.3.1 Column Charts
5.3.2 Bar Charts
5.3.3 Line Charts
5.3.4 Area Charts
5.3.5 Pie Charts
5.3.6 Scatter Plot
Summary
Resources
Answers
Chapter 6 Data Wrangling in Python
6.1 Pandas Data Manipulation
6.1.1 Pandas
6.1.1.1 Pandas Series
6.1.1.2 Pandas DataFrame
6.1.1.3 Comparison between Pandas Series and Pandas DataFrame
6.1.2 Series
6.1.2.1 Create a Series from an Array Using pandas.Series() Method
6.1.2.2 Create a Series from a List Using pandas.Series() Method
6.1.2.3 Access Elements from the Series by Providing the Position
6.1.2.4 Access Elements from the Series by Providing the Position
6.1.2.5 Sort and Display the Values from the Series Using sort_values()
6.1.2.6 Display the Values from the Series Using iloc[] Method
6.1.2.7 Count the Number of Entries in the Series Using count() Method
6.1.2.8 Display Features of the Series such as “size”, “shape”, “ndim”, “memory_usage”
6.1.2.9 Converting dtypes Using astype
6.1.2.10 Change the Name of the Column
6.1.3 Timedelta
6.2 Dealing with Missing Values
6.3 Date Reshaping
6.4 Filtering Data
6.5 Merging Data
6.6 Subsetting DataFrames in Pandas
6.7 Reshaping the Data and Pivot Tables
6.8 Backfill
6.9 Forward Fill
Summary
Exercises
Chapter 7 Functions in Python Pandas
7.1 Pandas DataFrame Functions
7.1.1 Groupby
7.1.1.1 Groupby and Aggregate Functions
7.1.1.2 Splitting the Data into Multiple Groups
7.1.1.3 Splitting the Data and Running an Aggregation Function
7.1.1.4 Nested Groups
7.1.1.5 Loop over Group by Groups
7.1.1.6 Display the Indices in Each Group
7.1.1.7 Iterate over All of the Groups
7.1.1.8 Finding the Values Contained in the Particular Group
7.1.2 Pandas Correlations
7.1.3 Pandas DataFrame All Method
7.1.4 Pandas DataFrame Any Method
7.1.5 Pandas DataFrame Columns Property
7.1.6 Pandas DataFrame count() Method
7.1.7 Pandas DataFrame describe() Method
7.1.8 Pandas DataFrame drop_duplicates() Method
7.1.9 Pandas DataFrame empty Property
7.1.10 Pandas DataFrame filter() Method
7.1.11 Pandas DataFrame equals() Method
Summary
Exercises
Chapter 8 Matplotlib for Data Visualization
8.1 Exploratory Data Analysis using Python
8.1.1 What is Exploratory Data Analysis?
8.1.2 Steps Involved in EDA
8.1.3 Libraries in Python Used in EDA
8.2 Matplotlib
8.2.1 Understanding Matplotlib’s Pyplot API
8.2.2 Box Plot
8.2.2.1 Example 1
8.2.2.2 Example 2
8.2.3 Pie Chart
8.2.3.1 Example 1
8.2.3.2 Example 2
8.2.4 Scatter Plot
8.2.5 Treemaps
8.2.5.1 Example 1
8.2.6 Heat Maps
8.2.7 Waterfall Chart
8.2.7.1 Example 1
8.2.7.2 Example 2
8.2.8 Bubble Chart
8.2.9 Histogram
8.2.9.1 Example 1
8.2.10 Line Plot
8.2.10.1 Example 1
8.2.10.2 Example 2
8.2.11 Interactive Features of Matplotlib
8.2.11.1 Clearing the Figure with clf() Method
8.2.11.2 Clearing Axes with cla() Method
Summary
Exercises
Answers
Chapter 9 Plotly for Data Visualization
9.1 Plotly Python Package
9.1.1 Scatter Plot
9.1.1.1 Example 1
9.1.1.2 Example 2
9.1.1.3 Example 3
9.1.2 Bar Plot
9.1.2.1 Example 1
9.1.2.2 Example 2
9.1.2.3 Example 3
9.1.2.4 Example 4
9.1.3 Pie Chart
9.1.3.1 Example 1
9.1.3.2 Example 2
9.1.3.3 Example 3
9.1.4 Word Cloud
9.1.4.1 Example 1
9.1.4.2 Example 2
9.1.5 Treemap
9.1.6 Choropleth Chart
9.1.6.1 Example 1
9.1.6.2 Example 2
9.1.6.3 Example 3
9.1.7 Area Chart
9.1.8 Bubble Chart
9.1.8.1 Example 1
9.1.8.2 Example 2
9.1.9 Gantt Chart
9.1.10 Boxplot
9.1.11 Violin plot
9.1.12 Histogram
Summary
Exercises
Chapter 10 Seaborn for Data Visualization
10.1 Seaborn Plots Using “iris” Dataset
10.1.1 Scatter Plot
10.1.2 Strip Plot
10.1.3 Swarm Plot
10.1.4 Count Plot
10.1.5 Box Plot
10.1.6 Violin Plot
10.1.7 Pair Plot
10.1.8 Pie Chart
10.2 Seaborn Plots Using “Superstore” Dataset
10.2.1 Bar Plot
10.2.2 Cat Plot
10.2.3 Countplot
10.2.4 Box Plot
10.2.5 Pair Plot
10.2.6 Implot Plot
10.3 Seaborn Plots Using “OLYMPIC” Dataset
10.3.1 DistPlot
10.4 Seaborn Plots Using “Passengers Flights” Dataset
10.4.1 Scatter Plot
10.4.2 Line Plot
10.4.3 Bar Plot
Summary
Chapter 11 Cases
11.1 Case Study 1
11.1.1 Analysis of Wine Quality Dataset
11.2 Case Study 2
11.2.1 Analysis of Titanic Dataset
Appendix Python Assignments
Index
: Reimagining Data Visualization Using Python is an extensive discourse on data visualization. It details how to perform data visualization on a variety of datasets using various data visualization libraries written in Python programming language. Understanding, visualizing, and presenting data is slowly and gradually becoming a must have skills for professionals in all disciplines. This book is designed for learners who are beginners in visualization using python. It is a guide with detailed out steps to write and execute command/code.
There are no comments on this title.