Reimagining date visualization using Python / (Record no. 22705)

MARC details
000 -LEADER
fixed length control field 08268nam a22001697a 4500
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9789354641336
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 005.133
Item number ACH
100 ## - MAIN ENTRY--AUTHOR NAME
Author name Acharya, Seema
245 ## - TITLE STATEMENT
Title Reimagining date visualization using Python /
Statement of responsibility, etc Seema Acharya
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication New Delhi :
Name of publisher Wiley Publication,
Year of publication 2022.
300 ## - PHYSICAL DESCRIPTION
Number of Pages xxiii, 348 pages :
Other physical details color illustrations ;
Dimensions 25 cm.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note Preface<br/>Acknowledgments<br/>About the Authors<br/>Chapter 1 Introduction to Data Visualization<br/>1.1 What is Data Visualization?<br/>1.2 Evolution of Data Visualization<br/>1.2.1 Era of Statistical Chart Types<br/>1.2.2 Era of Visual Display of Quantitative Information<br/>1.2.3 The Era of Convergence<br/>1.3 Why do We Need Data Visualization?<br/>1.4 Difference between Data Visualization and Infographics<br/>1.5 Principles of Gestalt’s Theory of Visual Perception<br/>1.5.1 Why is Gestalt’s Principle Important?<br/>1.5.2 Explanation of the Gestalt’s Principle<br/>1.6 Advantages of Data Visualization<br/>1.7 Benefits of Data Visualization<br/>Multiple-Choice Questions<br/>Answers<br/>Chapter 2 Types of Digital Data<br/>2.1 What is in Store?<br/>2.2 Classification of Digital Data<br/>2.2.1 Structured Data<br/>2.2.1.1 Sources of Structured Data<br/>2.2.1.2 Benefits of Structured Data<br/>2.2.1.3 Disadvantages of Structured Data<br/>2.2.1.4 Classifying Attributes of Structured Data<br/>2.2.2 Semi-Structured Data<br/>2.2.2.1 Sources of Semi-Structured Data<br/>2.2.3 Unstructured Data<br/>2.2.3.1 Issues with “Unstructured” Terminology<br/>2.2.3.2 How to Deal with Unstructured Data<br/>2.3 Structured versus Unstructured Data<br/>Summary<br/>Review Questions<br/>Exercise<br/>Resources<br/>Answers<br/>Chapter 3 Reading Data from Varied Data Sources into Python DataFrame<br/>3.1 Read from Excel Data Source<br/>3.1.1 Example: Read Data from “Superstore.xlsx”<br/>3.2 Read Data from .csv<br/>3.2.1 Example: Read Data from “iris.csv” into Pandas Data Frame<br/>3.3 Load a Python Dictionary into a DataFrame<br/>3.3.1 Cleaning up Data<br/>3.3.1.1 Remove Rows that Contain Empty Cells<br/>3.3.1.2 Cleaning Wrong Format<br/>3.3.1.3 Cleaning Wrong Data<br/>3.3.1.4 Removing Duplicates<br/>3.4 Reading JSON data into a Pandas DataFrame<br/>3.5 Reading Data from Microsoft Access Database<br/>3.6 Reading Data from .txt File<br/>3.7 Reading Data from XML File<br/>Summary<br/>Exercises<br/>Chapter 4 Pros and Cons of Charts<br/>4.1 Pie Chart<br/>4.1.1 When to Use a Pie Chart?<br/>4.1.2 How to Read a Pie Chart?<br/>4.1.3 Pros and Cons of a Pie Chart<br/>4.1.4 Five Tips for Using Pie Charts<br/>4.1.5 A Critique’s View<br/>4.2 Tree Map<br/>4.2.1 Pros of Treemap<br/>4.3 Heat Map<br/>4.4 Scatter Plot<br/>4.4.1 Correlation Coefficient<br/>4.4.2 Why Use a Scatter Plot?<br/>4.5 Histogram<br/>4.5.1 What is Required to Plot a Histogram?<br/>4.5.2 Pros of Histogram<br/>4.6 Word Cloud<br/>4.6.1 For What Should You Use a Word Cloud?<br/>4.6.2 Where Should You Not Use a Word Cloud?<br/>4.7 Box Plot<br/>4.7.1 Advantages of a Box Plot<br/>4.7.2 Disadvantages of Box Plot<br/>4.7.3 When to Use a Box and Whisker Plot<br/>4.7.4 What All It Can Help You With?<br/>4.7.5 Box Plot Symbol Explanation Diagram<br/>4.8 Chart Chooser<br/>Summary<br/>Review Questions<br/>Resources<br/>Answers<br/>Chapter 5 Good Chart Designs<br/>5.1 Mistakes That Can Be Avoided<br/>5.1.1 Example 1<br/>5.1.2 Example 2<br/>5.1.3 Example 3<br/>5.1.4 Example 4<br/>5.1.5 Example 5<br/>5.1.6 Example 6<br/>5.1.7 Example 7<br/>5.1.8 Example 8<br/>5.1.9 Example 9<br/>5.2 Less Is More<br/>5.2.1 Example 1<br/>5.2.2 Example 2<br/>5.2.3 Example 3<br/>5.3 Tables versus Charts<br/>5.3.1 Column Charts<br/>5.3.2 Bar Charts<br/>5.3.3 Line Charts<br/>5.3.4 Area Charts<br/>5.3.5 Pie Charts<br/>5.3.6 Scatter Plot<br/>Summary<br/>Resources<br/>Answers<br/>Chapter 6 Data Wrangling in Python<br/>6.1 Pandas Data Manipulation<br/>6.1.1 Pandas<br/>6.1.1.1 Pandas Series<br/>6.1.1.2 Pandas DataFrame<br/>6.1.1.3 Comparison between Pandas Series and Pandas DataFrame<br/>6.1.2 Series<br/>6.1.2.1 Create a Series from an Array Using pandas.Series() Method<br/>6.1.2.2 Create a Series from a List Using pandas.Series() Method<br/>6.1.2.3 Access Elements from the Series by Providing the Position<br/>6.1.2.4 Access Elements from the Series by Providing the Position<br/>6.1.2.5 Sort and Display the Values from the Series Using sort_values()<br/>6.1.2.6 Display the Values from the Series Using iloc[] Method<br/>6.1.2.7 Count the Number of Entries in the Series Using count() Method<br/>6.1.2.8 Display Features of the Series such as “size”, “shape”, “ndim”, “memory_usage”<br/>6.1.2.9 Converting dtypes Using astype<br/>6.1.2.10 Change the Name of the Column<br/>6.1.3 Timedelta<br/>6.2 Dealing with Missing Values<br/>6.3 Date Reshaping<br/>6.4 Filtering Data<br/>6.5 Merging Data<br/>6.6 Subsetting DataFrames in Pandas<br/>6.7 Reshaping the Data and Pivot Tables<br/>6.8 Backfill<br/>6.9 Forward Fill<br/>Summary<br/>Exercises<br/>Chapter 7 Functions in Python Pandas<br/>7.1 Pandas DataFrame Functions<br/>7.1.1 Groupby<br/>7.1.1.1 Groupby and Aggregate Functions<br/>7.1.1.2 Splitting the Data into Multiple Groups<br/>7.1.1.3 Splitting the Data and Running an Aggregation Function<br/>7.1.1.4 Nested Groups<br/>7.1.1.5 Loop over Group by Groups<br/>7.1.1.6 Display the Indices in Each Group<br/>7.1.1.7 Iterate over All of the Groups<br/>7.1.1.8 Finding the Values Contained in the Particular Group<br/>7.1.2 Pandas Correlations<br/>7.1.3 Pandas DataFrame All Method<br/>7.1.4 Pandas DataFrame Any Method<br/>7.1.5 Pandas DataFrame Columns Property<br/>7.1.6 Pandas DataFrame count() Method<br/>7.1.7 Pandas DataFrame describe() Method<br/>7.1.8 Pandas DataFrame drop_duplicates() Method<br/>7.1.9 Pandas DataFrame empty Property<br/>7.1.10 Pandas DataFrame filter() Method<br/>7.1.11 Pandas DataFrame equals() Method<br/>Summary<br/>Exercises<br/>Chapter 8 Matplotlib for Data Visualization<br/>8.1 Exploratory Data Analysis using Python<br/>8.1.1 What is Exploratory Data Analysis?<br/>8.1.2 Steps Involved in EDA<br/>8.1.3 Libraries in Python Used in EDA<br/>8.2 Matplotlib<br/>8.2.1 Understanding Matplotlib’s Pyplot API<br/>8.2.2 Box Plot<br/>8.2.2.1 Example 1<br/>8.2.2.2 Example 2<br/>8.2.3 Pie Chart<br/>8.2.3.1 Example 1<br/>8.2.3.2 Example 2<br/>8.2.4 Scatter Plot<br/>8.2.5 Treemaps<br/>8.2.5.1 Example 1<br/>8.2.6 Heat Maps<br/>8.2.7 Waterfall Chart<br/>8.2.7.1 Example 1<br/>8.2.7.2 Example 2<br/>8.2.8 Bubble Chart<br/>8.2.9 Histogram<br/>8.2.9.1 Example 1<br/>8.2.10 Line Plot<br/>8.2.10.1 Example 1<br/>8.2.10.2 Example 2<br/>8.2.11 Interactive Features of Matplotlib<br/>8.2.11.1 Clearing the Figure with clf() Method<br/>8.2.11.2 Clearing Axes with cla() Method<br/>Summary<br/>Exercises<br/>Answers<br/>Chapter 9 Plotly for Data Visualization<br/>9.1 Plotly Python Package<br/>9.1.1 Scatter Plot<br/>9.1.1.1 Example 1<br/>9.1.1.2 Example 2<br/>9.1.1.3 Example 3<br/>9.1.2 Bar Plot<br/>9.1.2.1 Example 1<br/>9.1.2.2 Example 2<br/>9.1.2.3 Example 3<br/>9.1.2.4 Example 4<br/>9.1.3 Pie Chart<br/>9.1.3.1 Example 1<br/>9.1.3.2 Example 2<br/>9.1.3.3 Example 3<br/>9.1.4 Word Cloud<br/>9.1.4.1 Example 1<br/>9.1.4.2 Example 2<br/>9.1.5 Treemap<br/>9.1.6 Choropleth Chart<br/>9.1.6.1 Example 1<br/>9.1.6.2 Example 2<br/>9.1.6.3 Example 3<br/>9.1.7 Area Chart<br/>9.1.8 Bubble Chart<br/>9.1.8.1 Example 1<br/>9.1.8.2 Example 2<br/>9.1.9 Gantt Chart<br/>9.1.10 Boxplot<br/>9.1.11 Violin plot<br/>9.1.12 Histogram<br/>Summary<br/>Exercises<br/>Chapter 10 Seaborn for Data Visualization<br/>10.1 Seaborn Plots Using “iris” Dataset<br/>10.1.1 Scatter Plot<br/>10.1.2 Strip Plot<br/>10.1.3 Swarm Plot<br/>10.1.4 Count Plot<br/>10.1.5 Box Plot<br/>10.1.6 Violin Plot<br/>10.1.7 Pair Plot<br/>10.1.8 Pie Chart<br/>10.2 Seaborn Plots Using “Superstore” Dataset<br/>10.2.1 Bar Plot<br/>10.2.2 Cat Plot<br/>10.2.3 Countplot<br/>10.2.4 Box Plot<br/>10.2.5 Pair Plot<br/>10.2.6 Implot Plot<br/>10.3 Seaborn Plots Using “OLYMPIC” Dataset<br/>10.3.1 DistPlot<br/>10.4 Seaborn Plots Using “Passengers Flights” Dataset<br/>10.4.1 Scatter Plot<br/>10.4.2 Line Plot<br/>10.4.3 Bar Plot<br/>Summary<br/>Chapter 11 Cases<br/>11.1 Case Study 1<br/>11.1.1 Analysis of Wine Quality Dataset<br/>11.2 Case Study 2<br/>11.2.1 Analysis of Titanic Dataset<br/>Appendix Python Assignments<br/>Index
520 ## - SUMMARY, ETC.
Summary, etc : Reimagining Data Visualization Using Python is an extensive discourse on data visualization. It details how to perform data visualization on a variety of datasets using various data visualization libraries written in Python programming language. Understanding, visualizing, and presenting data is slowly and gradually becoming a must have skills for professionals in all disciplines. This book is designed for learners who are beginners in visualization using python. It is a guide with detailed out steps to write and execute command/code.
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Subject Data visualization
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Subject Python (Programming Language.)
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Bill Date Full call number Accession Number Price effective from Koha item type
    Dewey Decimal Classification     Institute of Public Enterprise, Library Institute of Public Enterprise, Library S Campus 08/26/2023 Overseas Press India 909.00 19-08-2023 005.133 ACH 47763 08/26/2023 Books
    Dewey Decimal Classification     Institute of Public Enterprise, Library Institute of Public Enterprise, Library S Campus 08/26/2023 Overseas Press India 909.00 19-08-2023 005.133 ACH 47764 08/26/2023 Books
    Dewey Decimal Classification     Institute of Public Enterprise, Library Institute of Public Enterprise, Library S Campus 08/26/2023 Overseas Press India 909.00 19-08-2023 005.133 ACH 47765 08/26/2023 Books
    Dewey Decimal Classification     Institute of Public Enterprise, Library Institute of Public Enterprise, Library S Campus 08/26/2023 Overseas Press India 909.00 19-08-2023 005.133 ACH 47766 08/26/2023 Books
    Dewey Decimal Classification     Institute of Public Enterprise, Library Institute of Public Enterprise, Library S Campus 08/26/2023 Overseas Press India 909.00 19-08-2023 005.133 ACH 47767 08/26/2023 Books

Maintained and Designed by
2cqr automation private limited, Chennai. All Rights Reserved.

You are Visitor Number

PHP Hits Count